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ABSTRACT OF THE THESIS

Structure of Minimal Zero-Sum Sequences
of Maximal Length in

Zn ⊕ Zn
by

Donald Gene Adams, Jr
Master of Arts in Mathematics

San Diego State University, 2010

Zero-sum problems over finite abelian groups have been studied extensively over the
last decade for their application to factorization theory. As stated in [11], in order to
understand the factorization properties of an algebraic number field, one must completely
understand the structure of all minimal zero-sum sequences of maximal length. The maximal
length for a minimal zero-sum sequence in a group, G, is defined by the Davenport constant,
which is known only for specific types of groups such as cyclic groups, groups of rank 2, and
all p-groups[2]. The minimal zero-sum sequences of maximal length over G = Zn have been
completely determined [3]. Much progress has been made in the case when G = Zn ⊕ Zn,
however there is one small gap to be filled. The goal of this paper is to to fill the gap slightly
by showing which multiplicities occur in minimal zero-sum sequences over G = Zp ⊕ Zp for
p an odd prime. In the search for a proof of the main result, we come across an extension of a
well know result from [16] and [5].
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CHAPTER 1

INTRODUCTION AND APPLICATION

Let G be a finite abelian group. By the Fundamental Theorem of Finite Abelian

Groups, we have

G = Zn1 ⊕ Zn2 ⊕ · · ·Znd
,

where d is the rank of G and nd is the maximum possible order of an element of G, also called

the exponent of G. We call a sequence S = g1g2 · · · gk, with gi ∈ G for i = 1, 2, . . . , k and

repetitions allowed, a zero-sum sequence in G if

k∑
i=1

gi ≡ (0, 0, . . . , 0) ∈ G.

Note here that the order of the elements in S does not matter. Thus if we permute the elements

of S, we have not changed the sequence at all. We say that R is a subsequence of S if R|S,

and by convention we say that the empty sequence is a zero-sum sequence. Therefore, every

sequence contains the trivial zero-sum sequence. However, if a sequence S contains no proper

non-trivial zero-sum subsequence then we call S a minimal zero-sum sequence over G.

1.1 DAVENPORT CONSTANT

The Davenport Constant of G, denoted D(G), is the smallest positive integer l such

that every sequence S over G of length |S| ≥ l contains a non-trivial zero-sum subsequence.

Let us also define

M(G) = 1 +
d∑
i=1

(ni − 1),

where ni are the invariant factors of G. We defined M(G) in this way because

S = (1, 0, 0, . . . , 0)n1−1(0, 1, 0, . . . , 0)n2−1 · · · (0, 0, 0, . . . , 1)nd−1(1, 1, 1, . . . , 1)
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is a minimal zero-sum sequence over G. Therefore, we know that M(G) ≤ D(G). In two

consecutive papers, John Olson proved that D(G) =M(G) for all finite abelian groups of

rank 2 and for all finite abelian p-groups [14],[15]. For a few specific abelian groups, the

Davenport Constant is known. For example, if

G = Z2pn1 ⊕ Z2pn2 ⊕ Z2pn3 ,

then D(G) =M(G)[18]. Most other cases are still unknown although it is still conjectured

that D(G) =M(G) for all groups of the form Zrn for n, r ∈ N and for all groups of rank 3.

There are finite abelian groups where D(G) > M(G). The first such group identified was

G = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z6

by P. C. Baayen, who also made the conjecture that D(G) =M(G) for all finite abelian

groups, G[18]. The following theorem from [9] shows that there are actually infinitely many

abelian groups where D(G) > M(G):

Theorem 1.1. If

G = Zm ⊕ Z2
n ⊕ Z2n, where n,m ∈ N≥3 are odd and m|n,

or

G = Zi2 ⊕ Z5−i
2n , where n ∈ N≥3 is odd and i ∈ [2, 4]

then D(G) > M(G).

There is no conjecture for the general case, however, the best known upper bound for

the Davenport Constant comes from [13]. The authors prove that

D(G) ≤ n+

⌊
n log

(
|G|
n

)⌋
,

where n is the exponent of G (see [2]).

Other than defining the minimal zero-sum sequence of maximal length over a finite

abelian group, the Davenport Constant also played a very important role in the proof that there

are infinitely many Carmichael numbers [2].
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1.2 NON-UNIQUE FACTORIZATION

One of the most important applications of minimal zero-sum sequences is non-unique

factorization theory. To discuss this we must define the following:

Definition 1.2.

• H is called a monoid if H is a multiplicative commutative semigroup with unit element
and cancellation law.

• An element a ∈ H is called invertible if there exists â ∈ H such that aâ = 1 ∈ H . The
set of invertible elements of H is denoted by H×.

• An element a ∈ H is called an atom, or irreducible element, if a = bc implies that
either b or c is invertible. The set of atoms of H is denoted by A(H).

• Let z = a1a2 · · · ak be a factorization of a ∈ H such that ai ∈ A(H) for i = 1, 2, . . . , k
counting multiplicity. We denote |z| as the length of the factorization.

• For each a ∈ H define L(a) = {|z| : z is a factorization of a into atoms in H}. Thus
L(a) is the set of factorization lengths of a.

• A monoid, H , is said to be reduced if H× = {1}. For any monoid, H ,
Hred = {aH× : a ∈ H} is the associated reduced monoid.

• Let G be a finite abelian group and H a subset of G. Then the free abelian monoid over
H , denoted F(H), is the set of all sequences in H .

• Let G be a finite abelian group and H a subset of G. Then the block monoid over H ,

denoted B(H), is the set of zero-sum sequences over H .

If we would like to study the factorization of B(G) for some abelian group G, then we

would first need to identify the atoms. In B(G), the atoms are the zero-sum sequences that

cannot be factored, or “broken up,” into two zero-sum sequences. These are the minimal

zero-sum sequences since for every R ∈ F(G) such that R|S, R is not a zero-sum sequence.

Now that we have identified the atoms of B(G), we would like to characterize the structure of

A(B(G)); this would help us to study the factorization of this monoid. In [11], the authors

state that in order to investigate the factorization properties of B(G), it is necessary to know

the structure of the minimal zero-sum sequences of maximal length, D(G). For G = Zn, the
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characterization of the minimal zero-sum sequences of maximal length is completely

determined since all minimal zero sum sequences of maximal length are of the form xn for

any x ∈ G \ {0}[3]. Much progress has been made in the case where G = Zn ⊕ Zn, and the

goal of this research is to narrow the gap in completing the characterization of all minimal

zero-sum sequences of maximal length, 2n− 1.

1.3 CLASS GROUPS AND CLASS NUMBERS

The desire for studying free monoids and block monoids sprouted from their

applications to structures like Krull monoids. Krull domains and Krull monoids are important

and have applications in areas like module theory as [7] and [6] show. A Krull monoid is

defined as follows:

Definition 1.3. Let H be a monoid. H is called a Krull monoid if there exists a free monoid,

D, where Hred can be embedded in D such that for all a, b ∈ Hred we have a divides b in Hred

if and only if a divides b in D.

If we compare H and Hred, we see that H×red = 1. This is because if a ∈ H×, then

aH = H . Thus, in terms of the multiplication in the monoid, we have removed all of the

invertible elements in the monoid. This simplifies the factorization in the monoid because of

the definition of an atom. Recall a ∈ Hred is an atom if a = bc implies that a or b is invertible.

However, the only invertible element in Hred is the identity element. Thus the embedding

mentioned in the above definition is thought of as embedding the non-invertible elements in a

free monoid D. According to [11], every reduced Krull monoid is isomorphic to a block

monoid of a suitable subset of an abelian group. The group that one should choose is defined

as the class group and the class number is the order of the class group. The importance of the

class group is that the arithmetic of the Krull monoid is uniquely determined by its by the

class group. Class groups are also defined for algebraic number fields, where they are more

widely researched. Let F be an algebraic number field and OF be the ring of algebraic

integers of F . Let I(F ) denoted the group of fractional ideals of OF and P (F ) denote the



5

principle ideals of I(F ). Then the class group of F is I(F )/P (F ). The class number is the

order of the class group ([1], Definition 12.1.1 and 12.1.2). The factorization properties of an

algebraic number field is also determined by its class group. For example, let G be the class

group of an algebraic number field F (or a Krull monoid H). Then, from [4] we have,

• |G| = 1 if and only if F (or H) is factorial, which means the factorization into atoms of
every element of H is unique up to commutativity.

• |G| = 2 if and only if F (or H) is half-factorial, which means each element has a
unique factorization length, or |L(a)| = 1 for all a ∈ F (or H).

• |G| ≥ 3 if and only if for every N ∈ N there exists a ∈ F (or a ∈ H) such that
|L(a)| ≥ N .

Finding the class group of an algebraic number field is very difficult, however, there

exists formulas for the class numbers for very specific number fields. For example, [12] gives

class number formulas for an algebraic number field, F , if

F = Q(
√
−n) if n is square-free and n ≡ 1, 2 mod 4

using sums of Jacobi symbols. Let h(−n) denote the class number of Q(
√
−n), then we have

the following theorem.

Theorem 1.4. Let n be a positive, square-free integer with either n ≡ 1 mod 4 or n ≡ 2

mod 4, and let j be a positive integer with gcd(j, 2n) = 1 and 1 ≤ j ≤ n. Then if(
−4n
j

)
= 1, we have

h(−n) = 1

2

j−1
2∑
i=0

b (4i+2)n
j
c∑

a=b 4in
j
c+1

(
−4n
a

)
,

and if
(
−4n
j

)
= −1, then we have

h(−n) = 1

2

j−1
2∑
i=1

b 4in
j
c∑

a=b (4i−2)n
j
c+1

(
−4n
a

)
.
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For example, if n = 2 and j = 1, then
(
−8
1

)
= 1. Therefore, we have the first case

of the theorem and the double sum simplifies nicely and we have

h(−2) = 1

2

4∑
a=1

(
−8
a

)
= 1.

Thus, the class group for Q(
√
−2) is the trivial group and the number field is factorial by the

result from [4]. This means that the factorization in this number field is unique up to

commutativity. For a slightly more interesting example, consider n = 5 and j = 3. Then(
−20
3

)
= 1. Thus,

h(−5) = 1

2

1∑
i=0

b (4i+2)5
3
c∑

a=b 20i
3
c+1

(
−20
a

)
= 2.

Therefore, the class group of Q(
√
−5) is Z2, and by [4], the number field is half-factorial.

This means that the factorization into atoms in Q(
√
−5) may not be unique, however each

element has a unique factorization length. As a last example, let n = 21 and j = 5. Then(
−84
5

)
= 1 and

h(−21) = 1

2

2∑
i=0

b (4i+2)21
5

c∑
b 84i

5
c+1

(
−404
a

)
= 4.

Hence, there are two possibilities for the class group: either Z4 or Z2 ⊕ Z2. Determining the

actual class group is outside the scope of this project, however, the search has been narrowed

down significantly. Also, by [4], the factorization is neither factorial nor half-factorial. Thus,

characterizing the minimal zero-sum sequences in these two possible class groups is

imperative to determining the factorization properties in Q(
√
−21).
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CHAPTER 2

BACKGROUND AND DEFINITIONS

Much advancement has been made in the area of minimal zero-sum sequences. Of

course, it only makes sense to study these sequences in the groups for which the Davenport

constant is known: for groups like Zn or Zn ⊕ Zm for n,m ∈ N to name a few focused on in

this paper. Since this researched is highly related to that of Weidong Gao, Alfred Geroldinger,

and David J. Grynkiewicz, we will use the following definitions from their paper:[10]

Definition 2.1. For each S ∈ F(G),

• we can write S =
∏
g∈G

gvg(S), where vg(S) ∈ N0 for all g ∈ G. We call vg(S) the

multiplicity of g in S.

• Supp(S) = {g ∈ G : vg(S) > 0} is called the support of S.

• |S| = l =
∑
g∈G

vg(S) is called the length of S.

2.1 Zn

If we consider G = Zn for n ∈ N, then the minimal zero-sum sequences are almost

completely characterized. From [3], we have the following result:

Theorem 2.2. Let k >
n+ 3

2
, and S be a minimal zero-sum sequences over Zn with length k.

Then there is some a ∈ Zn such that va(S) = 2k − n.

In terms of the minimal zero-sum sequences of maximal length, D(G) = n, this

theorem characterizes them completely. They are all a single element, a ∈ Zn with

multiplicity n. Another consequence of the theorem is determining number of minimal

zero-sum sequences of length n in Zn. Since, in the maximal length case, gcd(a, n) = 1, the

number of minimal zero-sum sequences is given by φ(n), where φ is the Euler-phi function.
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2.2 Zn ⊕ Zn AND PROPERTY B

The research for this project will be based when G = Zn ⊕ Zn where n ∈ N. Some of

the results hold when n is composite and others, in particular, the main result, hold only when

n is prime. If G is of this form, we have the following definition from [8].

Definition 2.3. Let n ≥ 2. We say n has Property B if every minimal zero-sum sequence

S ∈ F(G) with length |S| = 2n− 1 contains some element with multiplicity n− 1.

It was first conjectured by Gao that every n has Property B. In a paper[8], Gao and

Geroldinger proved that 2, 3, 4, 5, 6 all have Property B and in a separate paper[17], Sury and

Thangadurai proved 7 has Property B as well. In the same paper, Gao and Geroldinger proved

the following theorem, which turned out to be an important step towards the proof that every

n has Property B.

Theorem 2.4. If n has Property B, then 2n has Property B.

This was an important step because it eludes to the fact that Property B may be multiplicative.

That is, if n and m both have Property B, then nm does as well. If it was proven that Property

B was multiplicative, then it was left to prove that all primes have this property. All

composites would fall as a corollary. That was exactly the progression taken. In a more recent

paper[10], Gao, Geroldinger, and Grynkiewicz proved that Property B was indeed

multiplicative. This left the problem to just primes, which is slightly simpler because of the

existence of inverses. Before [10] could finished being reviewed for publishing, a proof for all

primes was announced and filled the gap for Gao’s conjecture that all n ∈ N≥2 has Property

B. A citation was included in [10], although the paper which contains the proof for primes has

not yet been published.

Now that it is known that n− 1 of the 2n− 1 elements of a minimal zero-sum

sequence of maximal length are exactly the same, we would like to study the other elements

in the sequence. Can they be anything else? Obviously they can’t be (0, 0) because that is a

minimal zero-sum sequence itself. Nor can they be the element with multiplicity n− 1
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because that would give us n copies of one element. This would contradict the minimality of

the sequence because na ≡ 0 mod n for any a ∈ Zn ⊕ Zn. Another question raised is what

are the multiplicities of the other elements? Is there certain multiplicities that cannot happen?

These last two questions are the focus of this project.

Some progress has been made in studying the structure of the other elements of a

minimal zero-sum sequence of maximal length, but none of that progress answers the question

of which multiplicities can occur. For example, in [8] the authors prove the following:

Theorem 2.5. If (e1, e2) is a basis of G and a1, . . . , an ∈ Z with
n∑
j=1

aj ≡ 1 mod n, then

S = en−11

n∏
j=1

(aje1 + e2)

is a minimal zero-sum sequence with |S| = D(G).

This theorem states a possible structure of the leftover elements, but says nothing about how

many different elements will be in this sequence. The authors of [10] take this classification to

the next step by giving explicit forms for the minimal zero-sum sequences.

Theorem 2.6. Let G = Zn1 ⊕ Zn2 with 1 < n1|n2. Then a sequence S over G of length

D(G) = n1 + n2 − 1 is a minimal zero-sum sequence if and only if it has one of the following

two forms:

• S = e
ord(e1)−1
1

ord(e2)∏
ν=1

(xνe1 + e2), where

(e1, e2) is a basis of G with ord(ei) = ni for i ∈ {1, 2},
x1, x2, . . . , xord(e2) ∈ [0, ord(e2)− 1], and x2 + x2 + · · ·+ xord(e2) ≡ 1 mod ord(e1).

• S = gsn1−1
1

n2+(1−s)n1∏
ν=1

(−xνg1 + g2), where

{g1, g2} is a generating set of G with ord(g2) = n2, x1, x2, . . . , xn2+(1−s)n1 ∈ [0, n1− 1],
x1 + x2 + · · ·+ xn2+(1−s)n1 = n1 − 1, s ∈ [1, n2/n1], and either s = 1 or n1g1 = n2g2.

In our case, n1 = n2 so the two cases are the same. Thus, we know most of the

structure of the minimal zero-sum sequences of maximal length, but still no nothing about the
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possible multiplicities. This theorem gives us a construction of minimal zero-sum sequences,

but nothing about the exact multiplicities that occur. If we would like to construct a minimal

zero-sum sequence of maximal length over Zn ⊕ Zn using the previous theorem, we would

have to use the following method. Suppose we wanted to find a0, a1, a2, a3 ∈ Z9 ⊕ Z9 such

that

S = a80a
3
1a

3
2a

3
3

is a minimal zero-sum sequence. By Theorem 2.6, we define e1 = (1, 1), e2 = (0, 1),

x1 = x2 = x3 = 1, and x4 = x5 = x6 = 2. Since we want

x7 = x8 = x9 and we know
9∑
i=1

xi ≡ 1 mod 9,

we solve the equation 9 + 3x7 ≡ 1 mod 9. Thus 3x7 ≡ 1 mod 9, which cannot be solved

since 3 is a zero-divisor mod 9. Therefore, we cannot find a minimal zero-sum sequence

with the properties we want. In order to get something ”close,” let x7 = x8 = 3. Then we

must solve the equation 15 + x9 ≡ 1 mod 9. Thus x9 = 4. By substituting our values into

the construction of Theorem 2.6, we get

S = (1, 1)8(1, 2)3(2, 3)3(3, 4)2(4, 5).

We found a minimal zero-sum sequence of with a bigger support than we desired. Instead, if

we let x7 + x8 = 4, we must solve the equation 17 + x9 ≡ 1 mod 9. Therefore, x9 ≡ 2

mod 9, and we have found the minimal zero-sum sequence

S = (1, 1)8(1, 2)3(2, 3)4(3, 4)2

with the same size support, but still with a slightly different multiplicities. Thus the main

result has some significance.

Before stating the main result we must define multiplicity pattern. That is

(n0, n1, n2, . . . , nk) is multiplicity pattern of a sequence S ∈ F(G) if

S = an0
0 a

a1
1 · · · a

nk
k .
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Then the main theorem of this research is

Theorem 2.7. Let n be an odd prime. Then (n− 1, n1, n2, . . . , nk) is a multiplicity pattern of

an minimal zero-sum sequence of maximal length over Zn ⊕ Zn if and only if

n1 + n2 + · · ·+ nk is a partition of n with 2 ≤ k ≤ n− 1.

which determines which multiplicity patterns occur for minimal zero-sum sequences

of maximal length in Zn ⊕ Zn, where n is a prime.
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CHAPTER 3

A LINEAR DIOPHANTINE EQUATION

As we moved closer to the main result, we came across the following linear

Diophantine equation:

n1y1 + n2y2 + · · ·+ nkyk ≡ 1 mod n with n ∈ N≥2, ni, yi ∈ Zn for i = 1, 2, . . . , k, and

2 ≤ k ≤ n− 1.

The problem faced was given n1, n2, . . . , nk, we needed to find y1, y2, . . . , yk such that they

solved the above equation and yi 6≡ yj mod n for i 6= j. Note that we do not required the ni’s

to be distinct mod n. It is worth noting that Proposition 6.2.2 on page 340 of [5] guarantees

the exists of a solution to

k∑
i=1

niyi ≡ 1 mod n

as a corollary. We state that corollary here as a theorem.

Theorem 3.1. For n, n1, n2, . . . , nk ∈ Z
k∑
i=1

niyi ≡ 1 mod n

has a solution if and only if gcd(n, n1, n2, . . . , nk) = 1.

This result has been known for many years. The earliest paper we found this result in

was published in 1940 [16]. However, this result was not sufficient because we require the

elements of the solution to be distinct. Therefore we have our new theorem.

Theorem 3.2. Let n, n1, n2, . . . , nk ∈ Z where n is prime and 1 ≤ k ≤ n− 1. Then

k∑
i=1

niyi ≡ 1 mod n

has a solution with yi 6≡ yj mod n for i 6= j if and only if gcd(n, n1, n2, . . . , nk) = 1.



13

Here we limit n to be prime only because the proof breaks down if n is a general

composite number.

Proof. (=⇒) This is a direct consequence of Theorem 3.1.

(⇐=) Let gcd(n, n1, n2, . . . , nk) = 1. Note that at least one of the ni’s is not a

multiple of n since the greatest common divisor is 1.

We will use induction on k.

Let k = 1. We must solve the equation

n1y1 ≡ 1 mod n.

By inspection we see that if y1 ≡ n−11 mod n the equation is solved and the distinctness

requirement is vacuously satisfied.

Suppose for k = m− 1 a solution to can be found with the restriction that yi 6≡ yj mod n for

i 6= j. Let k = m. So we have
m∑
i=1

niyi = nmym +
m−1∑
i=1

niyi.

By the induction hypothesis, a solution to
m−1∑
i=1

niyi ≡ 1 mod n such that the yi’s are distinct mod n.

If yi 6≡ 0 mod n for all i = 1, 2, . . . ,m− 1, then let ym = 0 and a solution is found. If not,

without the loss of generality, let y1 ≡ 0. If nm ≡ 0 mod n, then we can pick ym to be

anything not equivalent to the others and a solution is found. If not, then multiply both sides

of the equation above by 1− nmym to get

1− nmym
m−1∑
i=1

niyi ≡
m−1∑
i=1

ni(1− nmym)yi ≡ 1− ymnm mod n.

Thus, by adding ymnm to both sides of the equivalence, we have a solution where, as long as

ym 6≡ n−1m , the first m− 1 yi’s are distinct mod n. We must check now if we can define ym

such that

(1− ymnm)yi 6≡ ym mod n for i = 1, 2, . . . ,m− 1.



14

Since we know that ym 6≡ 0 and y1 ≡ 0, we need only to check the above equation for

i = 2, 3, . . . ,m− 1. Also, we may use the fact that y−1i exists for i = 2, 3, . . . ,m. Hence, we

multiply both sides of the equation above by y−1i ym−1 to get

y−1m − nm 6≡ y−1i mod n for i = 2, 3, . . . ,m− 1.

Note that there are n− 2 choices for y−1m and m− 2 ≤ n− 3 exclusions from the equations

above. Hence, we can find y−1m such that

(1− ymnm)yi 6≡ ym for i = 1, 2, . . . ,m− 1,

and the solution exists.

In the statement of the theorem, we require 1 ≤ k ≤ n− 1. If k = n, then a solution

cannot be guaranteed. In the proof of the theorem we use a counting argument where we show

there is at least one extra element we can choose. In the case where k = n, there may or may

not be that extra element. The following theorem shows when a solution with distinct

elements exists.

Theorem 3.3. Let n1, n2, . . . , nn ∈ Z where n is an odd prime and

gcd(n, n1, n2, . . . , nn) = 1. Then

n∑
i=1

niyi ≡ 1 mod n

has a solution with yi 6≡ yj mod n for i 6= j if and only if the ni’s are not all equivalent

mod n.

Proof. (=⇒) Let n1, n2, . . . , nn ∈ Z with gcd(n, n1, n2, . . . , nn) = 1 and let
n∑
i=1

niyi ≡ 1 mod n

have a solution with yi 6≡ yj mod n for i 6= j. Suppose the ni’s are all equivalent mod n.

Without the loss of generality we may assume the ni’s are all equal and

{y1, y2, . . . , yn} = {1, 2, . . . , n}.
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Thus,
n∑
i=1

niyi ≡ n1

n∑
i=1

yi ≡ n1
n(n+ 1)

2
≡ 1 mod n.

This implies that gcd(n(n+1)
2

, n) = 1. However, if n ≥ 3, gcd(n(n+1)
2

, n) > 1. Therefore, a

solution with distinct elements cannot exist. Hence, the ni’s are not all equivalent mod n.

(⇐=)

Let n1, n2, . . . , nn ∈ Z with gcd(n, n1, n2, . . . , nn) = 1 such that not all the ni’s are

equivalent mod n. The proof relies on the fact that

1 + 2 + · · ·+ n =
n(n+ 1)

2
≡ 0 mod n since n is an odd prime,

and the observation that

n1 + 2n2 + · · ·+ nnn ≡ 1 mod n

if and only if

n1 + 2n2 + · · ·+ nnn − (1 + 2 + · · ·+ n)

≡ (n1 − 1) + 2(n2 − 1) + · · ·+ n(nn − 1) ≡ 1 mod n.

Thus, we can subtract from the ni’s until at least one of them is zero mod n. Note, not all of

them will be zero since they are not all equivalent. Without the loss of generality, suppose

nk+1 ≡ nk+2 ≡ · · · ≡ nn ≡ 0 mod n.

Then we have n1, n2, . . . , nk with gcd(n, n1, n2, . . . , nk) = 1 and 1 ≤ k ≤ n− 1. By

Theorem 3.2 there exists {y1, y2, . . . , yk} ( {1, 2, . . . , n} such that
k∑
i=1

niyi ≡ 1 mod n.

Then we can choose {yk+1, yk+2, . . . , yn} = {1, 2, . . . , n} \ {y1, y2, . . . , yk}, and we have

found a solution with distinct elements.

If k ≥ n+ 1, then there is no way to find a solution with distinct elements modulo n to

k∑
i=1

niyi ≡ 1 mod n
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by the pigeon-hole principle. Not only was this a major step in the proof of the main theorem

of this project, but it is a significant advancement of an old result.
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CHAPTER 4

MAIN RESULT

Before we move into the main result, there are a couple of observations and facts that

need to be stated. First, if

S = an0
0 a

n1
1 · · · a

nk
k

is a minimal zero-sum sequence over any finite abelian group, G, and θ is an automorphism of

G, then

θ(S) = θ(a0)
n0θ(a1)

n1 · · · θ(ak)nk

is also a minimal zero-sum sequence over G [9, 10, 8, 3]. Note that this does not change the

multiplicity pattern of the sequence, but only the elements in the sequence. Thus, for our

application, we can choose the appropriate automorphism of Zn ⊕ Zn such that

θ(S) = (0, 1)n−1an1
1 · · · a

nk
k .

Then, once we do our calculations with the given multiplicity pattern, we can apply θ−1 to get

back to the original sequence. Or if we find a minimal zero-sum sequence where (0, 1) is the

element with multiplicity n− 1, we can apply any automorphism to find a minimal zero-sum

sequence with any other non-zero element of Zn ⊕ Zn as the element of high multiplicity.

Secondly, since we are limiting our research to minimal zero-sum sequences of maximal

length over G = Zn ⊕ Zn, when we consider the multiplicity pattern (n− 1, n1, n2, . . . , nk)

we see that

k∑
i=1

ni = n, since

n− 1 +
k∑
i=1

ni = 2n− 1.
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Therefore, we can make our first worthwhile observation and say that the multiplicity pattern

of the leftover elements must be a partition of the integer n. This leads us to the first lemma in

proving the main result.

Lemma 4.1. Let n ∈ Z with n ≥ 3 and let S = (0, 1)n−1a
va1 (S)
1 · · · avak (S)k be a minimal

zero-sum sequence of maximal length in Zn ⊕ Zn where ai = (xi, yi) for i = 1, 2, . . . , k. Then

x1 = x2 = · · · = xk.

Proof. First note that
k∑
i=1

vai(S)xi ≡ 0 mod n

in order for S to be a zero-sum sequence. Thus

T = x
va1 (S)
1 x

va1 (S)
2 · · ·xvak (S)k

is a zero-sum sequence in Zn. Note that since va1(S) + va2(S) + · · ·+ vak(S) is a partition of

n, then |T | = n.

Suppose that T is not an minimal zero-sum sequence in Zn. That is to say,∑
i∈I

vai(S)xi ≡ 0 mod n for some I ( {1, 2, 3, . . . , k}

Then, let
∑
i∈I

vai(S)ai ≡ (0,m) mod n.

If m ≡ 0 mod n, then we have found a subsequence of S that sums to zero which contradicts

the fact that S is minimal. Thus, m 6≡ 0 mod n, however, by utilizing the n− 1 copies of

(0, 1), we have
n−m∑
i=1

(0, 1) +
∑
i∈I

vai(S)ai ≡ (0, n−m) + (0,m) ≡ (0, 0) mod n,

which is a contradiction since S is minimal. Therefore, T is an minimal zero-sum sequence in

Zn of length n, which is maximal length. By [3], there is an element that repeats n times. In

other words, x1 = x2 = · · · = xk.
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This is a technical result that tells us more about the structure of minimal zero-sum

sequences of this type. Since we now know that the first coordinates of the leftover elements

are all equal, then our problem will simplify from two dimensions to just one dimension. One

may also notice that Theorem 2.6 would give this result as well, by letting e1 = (0, 1) and e1

be any other element in Zn ⊕ Zn such that (e1, e2) is a basis. However, the above proof is very

different than that of Theorem 2.6, and the two were proved concurrently.

As a reminder, the goal is to determine which multiplicity patterns can or cannot

occur. The following lemma tells us more about structure of minimal zero-sum sequences, but

more importantly, tells us two multiplicity patterns that cannot occur: (n− 1, n) and

(n− 1, 1, 1, 1, . . . , 1). The lemma does so by giving bounds on the support of a minimal

zero-sum sequence. The support was defined in Definition 2.1 as

Supp(S) = {g ∈ G : vg(S) > 0}.

Lemma 4.2. Let S be an minimal zero-sum sequence in G = Zn ⊕ Zn of maximal length with

n ≥ 3. Then 3 ≤ |Supp(S)| ≤ n.

Proof. Suppose Supp(S) = {a0, a1, . . . , ak} where va0(S) = n− 1. First we must note that

2 ≤ |Supp(S)| ≤ n+ 1. This is true because |S| = 2n− 1 and n has Property B. Thus, it

suffices to show a contradiction when |Supp(S)| = 2 and |Supp(S)| = n+ 1. First assume,

|Supp(S)| = 2. Since n has Property B, there is an element with multiplicity n− 1. Since

there are only 2 distinct elements in S, the other element must have multiplicity n. This is a

contradiction since an is a zero-sum sequence for every a ∈ Zn ⊕ Zn and S was supposed to

be minimal.

Then assume |Supp(S)| = n+ 1. Then, without the loss of generality,

S = (0, 1)n−1a
va1 (S)
1 · · · avan (S)n . Let ai = (xi, yi), for each i = 0, 1, . . . , n. Then

n∑
i=0

vai(S)xi ≡
n∑
i=1

vai(S)xi ≡ 0 mod n

Also, since va0(S) = n− 1, we have
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n∑
i=1

vai(S) = n.

It follows that va1(S) = va2(S) = · · · = van(S) = 1. Also, by Lemma 4.1,

x1 = x2 = · · · = xn. Without loss of generality,

{y1, y2, . . . , yn} = {0, 1, . . . , n− 1}.

since if yi = yl for i 6= l then (xi, yi) = (xl, yl) which contradicts the fact that both elements

are in Supp(S).

Now, in order for the elements of S to sum to (0, 0), we need
n∑
i=1

yi ≡ 1 mod n.

If this were not true, then the second coordinates would not sum to 0. It follows that
n∑
i=1

yi =
n−1∑
i=1

i =
(n− 1)n

2
≡ 1 mod n.

Case 1: n is odd. Then
n− 1

2
∈ N and

(n− 1)n

2
≡ 0 6≡ 1 mod n.

This contradicts the fact that S is a zero-sum sequence.

Case 2: n is even. Then

(n− 1)n

2
=
n2

2
− n

2
≡ −n

2
mod n.

Therefore, it is necessary that −n
2
≡ 1 mod n. Or, in other words, we need

n

2
+ 1 =

n+ 2

2
= kn for n ∈ Z.

However, this implies that

2 ≡ 0 mod n,

which only occurs if n = 1, 2. Thus, we have contradicted the fact that S is a zero-sum

sequence. Therefore, it is impossible to have a minimal zero-sum sequence in Zn ⊕ Zn

(n ≥ 3) of maximal length containing n+ 1 distinct elements and we have the result.
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This eliminates (n− 1, n) as a possible multiplicity pattern for an minimal zero-sum

sequence of maximal length because |Supp(S)| must be greater than 2. The same can be said

for (n− 1, 1, 1, 1, . . . , 1) because |Supp(S)| must be less than n.

The next theorem clarifies the connection between linear Diophantine equations and

Theorem 2.7.

Theorem 4.3. Let n1 + n2 + · · ·+ nk be a partition of n ≥ 3 with 2 ≤ k ≤ n− 1. Then

k∑
i=1

niyi ≡ 1 mod n

has a solution such that yi 6≡ yj mod n for i 6= j if and only if there is a minimal zero-sum

sequence of maximal length with multiplicity pattern (n− 1, n1, n2, . . . , nk).

Proof. (=⇒) Suppose n1 + n2 + · · ·+ nk is a partition of n with 2 ≤ k ≤ n− 1 and suppose
k∑
i=1

niyi ≡ 1 mod n

has a solution such that yi 6≡ yj mod n for i 6= j. Let S = an−10 an1
1 · · · a

nk
k . We will find ai

for i = 0, 1, 2, . . . , k such that S is a minimal zero-sum sequence of maximal length. Note

that since

n− 1 +
k∑
i=1

ni = n− 1 + n = 2n− 1,

we have the proper length. Without the loss of generality and 4.1, we assume that

a0 = (0, 1) and ai = (x, yi) for i = 1, . . . k and some x ∈ Zn \ {0}.

All that is left is to define the yi for i = 1, 2, . . . , k. The conditions for defining the yi’s are the

following:

1. n1y1 + n2y2 + · · ·+ nkyk ≡ 1 mod n in order for S to be an minimal zero-sum
sequence, and

2. yi 6≡ yj for i 6= j so that we maintain the correct multiplicities.
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By the hypothesis, there exists a solution with distinct elements. Therefore, there

exists a sequence, S, such that S is a minimal zero-sum sequence of maximal length over

Zn ⊕ Zn with multiplicity pattern (n− 1, n1, n2, . . . , nk).

(⇐=)

Suppose n1 + n2 + · · ·+ nk is a partition of n with 2 ≤ k ≤ n− 1 and suppose there is a

minimal zero-sum sequence of maximal length with multiplicity pattern

(n− 1, n1, n2, . . . , nk). Let S = an−10 an1
1 · · · a

nk
k is a minimal zero-sum sequence. By

applying the proper automorphism, θ, we can transform S to

θ(S) = (0, 1)n−1θ(a1)
n1 · · · θ(ak)nk = (0, 1)n−1(x1, y1)

n1 · · · (xk, yk)nk .

By Lemma 4.1, x1 = x2 = · · · = xk. Thus, in order to for θ(S) to be a zero-sum sequence,

there must be a solution to
k∑
i=1

niyi ≡ 1 mod n

with yi 6≡ yj mod n for i 6= j in order to maintain the multiplicity pattern.

4.1 PROOF OF THEOREM 2.7

Proof. (=⇒) Suppose (n− 1, n1, n2, . . . , nk) is a multiplicity pattern of a minimal zero-sum

sequence of maximal length over Zn ⊕ Zn. That is, there exists a0, a1, . . . , ak ∈ Zn ⊕ Zn such

that

S = an−10 an1
1 a

n2
2 · · · a

nk
k

is a minimal zero-sum sequence of maximal length. Without the loss of generality, we may

assume

S = (0, 1)n−1an1
1 a

n2
2 · · · a

nk
k .

Since

n− 1 +
k∑
i=1

ni = 2n− 1, then
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k∑
i=1

ni = n.

Hence, n1 + n2 + · · ·+ nk is a partition of n. Also, by Lemma 4.2, 3 ≤ |Supp(S)| ≤ n. Since

Supp(S) = {a0, a1, . . . , ak},

thus 2 ≤ k ≤ n− 1.

(⇐=)

Let n1 + n2 + · · ·+ nk be a partition of n with 2 ≤ k ≤ n− 1. Since n is prime,

gcd(n, n1, n2, . . . , nk) = 1 and by Theorem 3.2, there exists a solution to
k∑
i=1

niyi ≡ 1 mod n

such that yi 6≡ yj mod n for i 6= j. By Theorem 4.3, there exists a minimal zero-sum

sequence of maximal length over Zn ⊕ Zn with multiplicity pattern

(n− 1, n1, n2, . . . , nk).

If a result similar to that of Theorem 3.2 could be found for n composite, then all

possible multiplicity patterns for minimal zero-sum sequences of maximal length over

Zn ⊕ Zn would be determined. However, since the proof utilizes the existence of inverses, a

generalized result was not found.
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CHAPTER 5

FUTURE WORK

5.1 LINEAR DIOPHANTINE EQUATIONS

After coming across this application of Diophantine equations, solving them became

an extreme interest. Of course, in the linear case, we know when solution exists and when

they do not, however, the solution’s distinctness mod n has not been investigated. Thus, we

offer a conjecture for advancement, which is a generalization of Theorem 3.2 for n composite.

Conjecture 5.1. Let n, n1, n2, . . . , nk ∈ Z where 1 ≤ k ≤ n− 1. Then
k∑
i=1

niyi ≡ 1 mod n

has a solution with yi 6≡ yj mod n for i 6= j if and only if gcd(n, n1, n2, . . . , nk) = 1.

Again, Theorem 3.1 from [5] guarantees the existence of a solution, but says nothing

about the elements of the solution being distinct.

5.2 MINIMAL ZERO-SUM SEQUENCES

Since this project does not completely characterize all minimal zero-sum sequences of

maximal length of Zn ⊕ Zn, we offer a conjecture for future work.

Conjecture 5.2. Let n1 + n2 + · · ·+ nk be a partition of the integer n ≥ 3 with

2 ≤ k ≤ n− 1. Then (n− 1, n1, n2, . . . , nk) is a multiplicity pattern of a minimal zero-sum

sequence in Zn ⊕ Zn of maximal length if and only if gcd(n, n1, n2, . . . , nk) = 1.

Although we do not have a proof for Conjecture 5.2, we have the following lemma,

which is half of the proof of Conjecture 5.2.

Lemma 5.3. Let n1 + n2 + · · ·+ nk be a partition of the integer n ≥ 3 with 2 ≤ k ≤ n− 1. If

(n− 1, n1, n2, . . . , nk) is a multiplicity pattern of an minimal zero-sum sequence in Zn ⊕ Zn

of maximal length, then gcd(n, n1, n2, . . . , nk) = 1.
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Proof. Let n1 + n2 + · · ·+ nk be a partition of the integer n ≥ 3 with 2 ≤ k ≤ n− 1. Thus,

we are attempting to find a minimal zero-sum sequence of the form

S = an−10 an1
1 a

n2
2 · · · a

nk
k for ai ∈ Zn ⊕ Zn for each i = 0, 1, . . . , k. Without the loss of

generality and Lemma 4.1, we may assume S = (0, 1)n−1(x, y1)
n1(x, y2)

n2 · · · (x, yk)nk .

Thus,
k∑
i=1

niyi ≡ 1 mod n

in order for S to be a zero-sum sequence. Suppose

gcd(n1, n2, . . . , nk, n) > 1.

By Theorem 3.1 from [5],
k∑
i=1

niyi ≡ 1 mod n

does not have a solution at all. Therefore, if (n− 1, n1, n2, . . . , nk) is a multiplicity pattern of

an minimal zero-sum sequence of maximal length over Zn ⊕ Zn, then

gcd(n, n1, n2, . . . , nk) = 1.

If Conjecture 5.1 was proved, then Conjecture 5.2 would fall immediately by Lemma

5.3 and Theorem 4.3. Thus all possible multiplicity patterns would be found and all minimal

zero-sum sequences of maximal length over Zn ⊕ Zn would be completely characterized.



26

BIBLIOGRAPHY
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[3] J. D. Bovey, Paul Erdős, and Ivan Niven. Conditions for a zero sum modulo n. Canad.
Math. Bull., 18(1):27–29, 1975.

[4] L. Carlitz. A characterization of algebraic number fields with class number two. Proc.
Amer. Math. Soc., 11:391–392, 1960.

[5] Henri Cohen. Number theory. Vol. I. Tools and Diophantine equations, volume 239 of
Graduate Texts in Mathematics. Springer, New York, 2007.

[6] Alberto Facchini. Direct sum decompositions of modules, semilocal endomorphism
rings, and Krull monoids. J. Algebra, 256(1):280–307, 2002.

[7] Alberto Facchini. Krull monoids and their application in module theory. In Algebras,
rings and their representations, pages 53–71. World Sci. Publ., Hackensack, NJ, 2006.

[8] Weidong Gao and Alfred Geroldinger. On zero-sum sequences in Z/nZ⊕ Z/nZ.
Integers, 3:A8, 45 pp. (electronic), 2003.

[9] Weidong Gao and Alfred Geroldinger. Zero-sum problems in finite abelian groups: a
survey. Expo. Math., 24(4):337–369, 2006.

[10] Weidong Gao, Alfred Geroldinger, and David J. Grnkiewicz. Inverse zero-sum problems
iii. Acta Arithmetica, 141.2:103–152, 2010.

[11] Alfred Geroldinger and Franz Halter-Koch. Non-unique factorizations: a survey. In
Multiplicative ideal theory in commutative algebra, pages 207–226. Springer, New
York, 2006.

[12] Richard H. Hudson, Charles J. Judge, and Turker Teker. Class number formulae for
imaginary quadratic number fields Q(

√
−n) with n squarefree and n ≡ 1 (mod 4) or

n ≡ 2 (mod 4). Enseign. Math. (2), 45(3-4):349–355, 1999.

[13] Roy Meshulam. An uncertainty inequality and zero subsums. Discrete Math.,
84(2):197–200, 1990.

[14] John E. Olson. A combinatorial problem on finite Abelian groups. I. J. Number Theory,
1:8–10, 1969.



27

[15] John E. Olson. A combinatorial problem on finite Abelian groups. II. J. Number Theory,
1:195–199, 1969.

[16] S. S. Pillai. On a linear Diophantine equation. Proc. Indian Acad. Sci., Sect. A.,
12:199–201, 1940.

[17] B. Sury and R. Thangadurai. Gao’s conjecture on zero-sum sequences. Proc. Indian
Acad. Sci., 112(3):399–414, 2002.

[18] P. van Emde Boas. A combinatorial problem on finite abelian groups. II. Math. Centrum
Amsterdam Afd. Zuivere Wisk., 1969(ZW-007):60, 1969.



ABSTRACT OF THE THESIS

Structure of Minimal Zero-Sum Sequences
of Maximal Length in

Zn ⊕ Zn
by

Donald Gene Adams, Jr
Master of Arts in Mathematics

San Diego State University, 2010

Zero-sum problems over finite abelian groups have been studied extensively over the
last decade for their application to factorization theory. As stated in [11], in order to
understand the factorization properties of an algebraic number field, one must completely
understand the structure of all minimal zero-sum sequences of maximal length. The maximal
length for a minimal zero-sum sequence in a group, G, is defined by the Davenport constant,
which is known only for specific types of groups such as cyclic groups, groups of rank 2, and
all p-groups[2]. The minimal zero-sum sequences of maximal length over G = Zn have been
completely determined [3]. Much progress has been made in the case when G = Zn ⊕ Zn,
however there is one small gap to be filled. The goal of this paper is to to fill the gap slightly
by showing which multiplicities occur in minimal zero-sum sequences over G = Zp ⊕ Zp for
p an odd prime. In the search for a proof of the main result, we come across an extension of a
well know result from [16] and [5].


