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1 Linear Congruence

Given n,k € N and ay, ag, . ..,a; € Z,, it is known classically (e.g. [4, 5]) that
the linear congruence

a1y + asxe + - +arxp =1 (in Zy,) (%)

has a solution if and only if ged(aq,ag,...,ar) € Z), the group of units of
Z,,. We ask when such a solution exists with distinct x; € Z,,, a question that
appears to have been overlooked in the literature. In general, some additional
conditions are necessary; for example, 1x; 4+ lxg + lx3 = 1 does not have a
solution with distinct z; € Zs.

Our partial solution has a stronger coefficient condition, and another restric-
tion involving ¢(n), the Euler totient. The general case remains open.

Theorem 1. If k < ¢(n) and a; € Z* (1 < i < k), then there exist distinct
x; € Ly, satisfying (x).

Proof. We first construct yi, yo, . . . yi iteratively, as will be explained. For nota-
tional convenience, for ¢ < j we set y; ; = ¥i(1 — @ir1Yi+1)(1 — @ipoyiyo) - - (1 —
a;—1y;—1) (note that y; ;411 = v;). We set y; = ayt; for j > 1 we let y; be
any element chosen from S; \ T, where S; = {y € Z, : 1 —ajy € Z}}, and
T; ={y € Zyn : y(1 + ajyi;) = yi;»1 <t < j}. Note that S; ensures that
1 — ajy; is invertible, and that T; ensures that y; # v; ;(1 — a;y;) = yi j4+1 for
all i < j.

Now, set z; = y; g+1, for 1 < i < k. ajz1 + a2 + - - - + apx) conveniently
telescopes to 1, because ai1y; = 1. Suppose that z; = z; (for i < j). Then
Yik+1 = Yjk+1- We may cancel the common terms, because they were con-
structed to be invertible, to get y; j+1 = ¥jj+1 = y;, which contradicts our
construction of y;. Hence the z; are distinct, and a solution to (x).

It remains to prove that S; \ T; is nonempty. We first prove that |S;| =
|Z)| = ¢(n), by showing that f(y) = 1 — a;y is an isomorphism (but not an
automorphism) of Z,,. If f(y) = f(v'), then 1 —a;y = 1—a;y’ and a;(y—y’) =0,
but a; is invertible, hence y = 3. So f is injective on a finite set and hence
bijective. Finally, we prove that |T;| < j—1 < k—1 < k < ¢(n), by showing that
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y(14 a;jyi ;) = vi; has at most one solution y. If (14 a;y; ;) is invertible, then
y = (14 a;yi,;) " 'vi,; is unique. If not, then there is some m > 1 with m|n and
m|(14+a;y; ;). If there is a solution y then also mly; ;, so m|(1+a;yi ;) —a;yi; =
1, a contradiction.

O

If n is prime, we can do better, solving the problem completely. Clearly it is
necessary that k < n, and that not all a; are zero, i.e. ged(ay,as,...,a;) € Z3.

Theorem 2. Let n be an odd prime, k < n, and gcd(a1,as, ... ,ar) € Z)}. Then
there exist distinct ©; € Ly, satisfying (x), if and only if either (a) k < n, or (b)
not all of the a; are equal.

Proof. The nonzero a; € Z, and ¢(n) = n—1, so unless there are n nonzero a;,
we can apply Theorem 1, and arbitrarily assign leftover distinct elements from
Z,, to those x; where a; = 0. If k =n and a; = --- = a; = t, then there is only
one possible solution, and it fails because t(0+14---+n) = tn% =0in Z,.

Remaining is the case where k = n, the a; are all nonzero and not all equal.
Set a; = a; — a;. More than zero, but less than n, of the a} are nonzero, so we
can find distinct z; € Z,, with ajz1+---al,x,, = 1. But now a121 +- -+ anx, =
(af +a)zr + -+ (al, + ar)xy, = (a1 + -+ a,z) +ar(z1 4+ +2p) =
1+a1(0+14--+n)=1+ant =1inZ,. O

2 Application

Fix the finite abelian group Z, x Z,. We consider multisets' of elements such
that their sum is zero; we call these zero-sum multisets. They have a rich litera-
ture and history (see [3]), arising from fundamental number theoretic questions
about nonunique factorization.

It is well-known that the largest irreducible (i.e. containing no other non-
trivial zero-sum multiset) zero-sum multiset is of size 2n — 1. Recently it has
been shown (see [2]) that any zero-sum multiset of this size contains some ele-
ment of multiplicity n — 1. In [1] it was shown that the remaining multiplicities
ai,as,...ar (where a3 + as + -+ + ax = n) must admit a solution to () in
distinct elements of Z,,, leaving open the question of when this occurs.

Corollary 3. Letn > 0, k < ¢(n), and a; € N with a1 + -+ + a = n and
gced(a;,m) = 1. Then there is an irreducible zero-sum multiset in Z,, X Z,, whose
elements have multiplicities n — 1, a1, asz, ..., ag.

Corollary 4. Let n > 0 be prime, k < n, and a; € N with a1 +---+ar =n

and ged(ay, ag, . . .,ax,n) = 1. Then there is an irreducible zero-sum multiset in
Ly, X L, whose elements have multiplicities n — 1, a1, a9, ...,ax if and only if
1<k<n.

1 For historical reasons these are called sequences in the literature, although the elements
are not ordered.
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